
Technical Exchange:
RTI 2.0 Design

 (HEADER)

9 October 1997
Mr. Steve Bachinsky, SAIC

2

RTI 2.0 Design Overview

• Program Overview
• Analysis Phase
• Design Phase
• RTI 2.0 Design

3

Program Overview

• RTI 2.0 Phase I
- four month effort involving analysis and design

• Design Objectives
- provide full functionality (Interface Specification 1.1) with emphasis

on performance across the M&S domains
- develop a quality design that is buildable and maintainable
- ensure support for a wide range of platforms, operating systems, and

programming languages

• Test Plan
- address development testing issues

4

RTI 2.0 Design Approach

• Requirements
- derived from Interface Specification and RTI 1.0 implementation
- considered use patterns from federations representative of key M&

S domains (training, analytic, hard real-time)
- performed use cases for analysis of requirements

• Program Phases
- divided into analysis and design phases

Analysis Phase

RTI 1.0

IF Spec 1.1

domain uses

Design Phase

u IF Spec use cases
u focused research tasks

u object decomposition
u implementation issues

5

RTI 2.0 Design Overview

• Program Overview
• Analysis Phase

- Interface Specification Use Cases
- Focused Research Tasks

• Design Phase
• RTI 2.0 Design

6

Analysis Phase

• Object-Oriented Analysis (OOA)
- examine domain requirements
- discover fundamental objects and relationships

• Use Cases
- examines response of a system to a particular stimulus
- captures detailed system requirements and identifies objects

• Critical Architectural Elements
- performed focused research into the “long poles” of the design
- examined implementation/portability issues and identified

alternatives to support flexibility and extensibility

7

Interface Specification Use Cases

• Requirements Analysis
- understand details associated with service operations
- identify implementation issues with the Interface Specification

• Functional Decomposition
- determine “functional objects” and actions which contribute to the

system design

• CASE Tool Support
- graphically depict the objects and actions required in performing a

particular use case scenario
- Rational Rose integrates “use case” and “logical” views

■ logical view captures design classes, associations, …

8

Join Federation Use Case

 : RTIadministrator : federate

1: provide federation name

 : Federation
Registry

 : FOMregistry : Federate
Registry

2: check federation existence

3: provide federate name

4: add federate to registry

5: provide FED file name

7: process FED file

6: check FED file compatibility

8: provide RID file name

9: process RID file

9

Focused Research Tasks

• LBTS Algorithm
• Threading Model & Event Scheduler
• Primary Data Flow
• Administrative Communications
• Data Addressing and Routing
• Network Abstraction
• Reliable Multicast

10

LBTS Algorithm

• Issue
- delivery of time stamped order (TSO) messages requires the

distributed computation of the lower bound on time stamp (LBTS)

• Requirements
- performance
- robustness
- dynamic time regulating topology

• Strategies
- conservative synchronization algorithms
- global virtual time algorithms
- distributed snapshot algorithms

11

Threading Model & Event Scheduler

• Issue
- support different threading models and exploit multi-processor

hardware
- mechanism to facilitate event unification (RTI & federate)

• Requirements
- federate configurable
- platform portability

• Strategies
- functional vs transactional threading decomposition
- single threaded, separate RTI thread, reentrant federate
- “Reactor” pattern
- federate polling vs blocking (i.e., file descriptor)

12

Primary Data Flow

• Issue
- identify primary data flow paths and minimize processing cycles per

transaction

• Requirements
- performance
- validation of pre-conditions for Interface Specification services

• Strategies
- conditional logic vs dynamic binding (“State” pattern)
- pre-allocated memory pools
- minimize data copy

13

Administrative Communications

• Issue
- facilitate communication for administrative services

• Requirements
- support point-to-point topologies and point-to-multipoint

mechanisms

• Strategies
- “Proxy/Server” pattern abstracts remote operation invocation
- leverage existing RTI communications infrastructure

14

Data Addressing and Routing

• Issue
- configurable mechanism which minimizes the communication of

unwanted data

• Requirements
- support class (DM) and value based (DDM) filtering
- scalability

• Strategies
- multicast technology
- static and dynamic gridding for DDM
- dynamic producer/consumer mapping

15

Network Abstraction

• Issue
- isolate internal RTI modules from platform dependencies associated

with I/O mechanisms

• Requirements
- platform portability
- performance

• Strategies
- abstract transport mechanism behind standard interface
- exploit operating system mechanisms for optimal performance

16

Reliable Multicast

• Issue
- reliable multipoint-to-multipoint communication mechanism

• Requirements
- scalability
- performance
- encapsulated within the virtual network module

• Strategies
- ACK vs NACK based
- centralized sequencer
- RMP (COTS package with tailorable protocol)

17

RTI 2.0 Final Design Review

•Program Overview
•Analysis Phase
°Design Phase

-activities
-layered architecture
-design modules

•RTI 2.0 Design

18

Design Phase

• Object-Oriented Design (OOD)
- refined objects and relationships from the analysis effort
- examined architecture and implementation issues

• Design Modules
- architecture separated into individual modules (or packages) which

provide specific functionality and attempt to maximize decoupling

• Class Diagrams
- identified class interfaces and relationships between classes

• Collaboration Diagrams
- performed localized use cases to refine class functionality and

relationships

19

RTI 2.0 Design Architecture

Federate

Distribution Management
Global Addressing Knowledge

Presentation Management

Physical Network

Distributor

Queues

Reduction Network Channels

Virtual Network

Object Management

Data Transmission Controllers
Time Management

20

Design Modules

• Presentation Manager
- provides the HLA compliant runtime interface between the RTI

application library and the federate application
- handles different programming languages and threading models

• Administration
- general administrative support for federation executions
- provides distributed operating system support including distributed

object communication graphs

• Process Model
- contains elements for managing events, timeouts, and processing

threads

21

Design Modules

• Virtual Network
- standard interface used to communicate with the network
- hides communication mechanisms from the other modules

• Object Management
- maintains information on federation objects and interactions
- supports efficient data transfer between the federate and network

• Distribution Management
- addresses data for transmission and reception purposes

according to federation routing guidelines

• Time Management
- controls the advancement of a federate’s time
- correctly orders and releases data to the federate

22

RTI 2.0 Design Modules

°Presentation Manager
•Administration
•Process Model
•Virtual Network
•Object Management
•Distribution Management
•Time Management

23

Presentation Management Module

• Language independent interface between RTI and federate
• Two Key Classes

- RTIambassador
- FederateAmbassador

internal RTI modules

federate

presentation manager

communication network

virtual network layer

� provides runtime interface
between RTI & federate

� facade to internal modules
� handles language issues

24

Presentation Manager Design Issues

• Supports language neutral interface to federate
- multiple implementations are created for conversion with different

federate programming languages
- compliant with the Interface Specification

• Message Processing
- receives message from internal modules which result in invocations

on the FederateAmbassador
- RTIambassador invocations result in the creation of messages which

are dispatched to the appropriate internal module

• Provides configurability for threading model
- RTIambassador subclassed and key methods overridden depending

on RTI servicing requirements

25

AppFedAmbassador

RTIambassadorFactory

create()
RTIambassador

FederateAmbassador

PresentationManager

invokes

RTIsingleThreaded

tick()

Scheduler

invokes

RunScheduler
invokes

1

1

RTInonReentrant

tick()

1..*

1

RTIreentrant

1

Thread

1

1

instantiates

1..*

1

instantiates

1

Runnable

1 1
instantiates

1

MessageDeliverer

1

ReentrantCallbackHandler

instantiates

1

1

The mechanisms used to actually
deliver messages are illustrated in
the Time Management Module.

PresentationManager Class Diagram

26

RTI 2.0 Design Modules

• Presentation Manager
° Administration
• Process Model
• Virtual Network
• Object Management
• Distribution Management
• Time Management

27

Administration Module

• Administration Module Requirements
- communications support for RTI to RTI administrative data
- general distributed object support
- graph topology support

internal RTI modules

federate

presentation layer

communication network

� RTI Executive Interface
� Federation Executive Interface
� Federate Administrative Interface
� Graph Topology Support

virtual network layer

Admin

28

Key Module Functionality

• RTI Executive
- support for federation execution creation and resource allocation

• Federation Executive
- central coordinator for federation administrative tasks

• Federate Administrator
- provides administrative services for internal modules as well as other

distributed RTI components

• Distributed Object Support
- enables distributed communication using the “Proxy” pattern

• Graph Topology Support
- provides functionality for local connectivity graphs

29

Graph Topology Support

• Support for general graph (mesh) topologies where the nodes
are federates and the arc’s are point-to-point links

• Reduction network support (used for LBTS calculations) is
provided by a hierarchical graph

• Two types of servers
- graph nodes - typically in federates, provide information
- graph managers - typically in the federation executive, manages the

graph topology, initiates calculations, etc.

• Proxies are distributed as operation parameters

- key to supporting topology distribution

30

 : Scheduler

A : LivenessNodeServer

B Proxy : LivenessNodeProxy

C Proxy : LivenessNodeProxy

Local Operations for Machine "A"

A Proxy on B : LivenessNodeProxy

 : EventHolder

 : EventHolder

A Proxy on C : LivenessNodeProxy

1: handleTimeout ()

7: handleTimeout ()
3: heartbeat (heartbeatStruct)

4: heartbeat (heartbeatStruct)

5: heartbeat (heartbeatStruct)

2: Send Heartbeats

8: Check Heartbeats

6: heartbeat (heartbeatStruct)

Liveness Heartbeat Collaboration
Diagram

31

RTI 2.0 Design Modules

• Presentation Manager
• Administration
° Process Model
• Virtual Network
• Object Management
• Distribution Management
• Time Management

32

Process Model Module

• Process Model Module Requirements
- event unification
- transaction scheduling
- support diverse threading schemes

internal RTI modules

federate

presentation layer

communication network

� manages events, timeouts, & threads
� “Reactor” pattern used for scheduling
� abstraction to threads

virtual network layer

PM

33

Process Model Design Issues

• Performance vs Ease of Use
- managing events is straightforward but requires a framework for the

diverse range of event types, implementing priorities, etc.
- threading simplifies the developers task but can have significant

performance implications which must be evaluated

• Portability
- diverse platforms and operating systems may have differences in low

level I/O APIs, and threading implementations

• Configurability
- federate polling vs blocking (i.e., file descriptor)

34

Sources of Asynchronous Events

• Event Types
- (1) File descriptor events

■ Input
■ Output
■ Exceptions

- (2) Time events (Timeouts)

• Event Handling
- Polling - inefficient (sometimes in the extreme)
- Event Unification

■ Synchronous - “select()” on multiple sources and block
■ Asynchronous - win32, Solaris 2.6, etc.

- Multiple Threads - individual threads block on each event source

35

RTI and Federate Event Sources

federate

presentation layer

GUI
keyboard

mouse

callbackscalls

inputblocking status

timeouts

timeouts

Scheduler

timeouts

Message
Queues

Time
Manager

Message
Dispatch

Data
Bundling

Virtual Network Layer

36

Single Threaded tick()

GUI
keyboard

mouse timeouts

timeouts
file descriptors

1

2 3
4

5

6

tick()

federate

Virtual Network Layer

Scheduler
Message
Queues

Time
Manager

Message
Dispatch

Data
Bundling

37

Issues Associated with tick()

• tick() serves two purposes:
- gives the RTI cycles to “service the wire”
- gives the RTI cycles to “call back” the application

• Servicing the wire requires high frequency polling
- current model means high-frequency state updates
- difficult to sprinkle calls to tick() throughout Federate code

■ short duration computation loops OK
■ long duration computation loops may need to tick() throughout

◆ must anticipate state updates (often difficult)

• disabling callbacks helps
- federate frequently calls tick() with callbacks disabled
- enables callbacks when able to service them

38

Threading Paradigm is a Match for
Asynchronous Event Handling

• Operations performed by by tick() with callbacks disabled are
essentially decoupled from the Federate
- We could decouple the processing with multiple threads

• Threading can improve performance depending on application
characteristics
- Advantages

■ Simpler to code Federate
■ OS schedules processing based on requirements

- Disadvantages
■ expense due to context switching
■ expense due to synchronization locks

- Single CPU (Preemption) - Federate need not call tick() based on
worse case servicing requirements

- Multiple CPU = Parallelism

39

Thread in (non-Reentrant) Federate,
Thread in RTI

Message
Queues

GUI
keyboard

mouse timeouts

timeouts
file descriptors

tick()

federate

Virtual Network Layer

serviceEvents() 1 2

Callbacks Implicitly
Enabled

Message
Queues

Time
Manager

Message
Dispatch

Data
Bundling

Scheduler

thread

thread

40

Thread in Federate,
 Thread in RTI, Thread for Callbacks

synchronization

GUI
keyboard

mouse timeouts

timeouts
file descriptors

federate

Virtual Network Layer

serviceEvents()

callbacksthread

thread

thread

Message
Queues

Time
Manager

Message
Dispatch

Data
Bundling

Scheduler

41

In All Cases, Calls to the RTI “Borrow” the
Federate Thread (no context switch)

Message
Queues

GUI
keyboard

mouse timeouts

timeouts
file descriptors

federate

Virtual Network Layer

Message
Queues

Time
Manager

Message
Dispatch

Data
Bundling

Scheduler

42

Configurable Threading Model

• The RTI is designed to be tunable/configurable to the underlying
thread model which the application developer desires
- Allow threads where desired for maximum flexibility and throughput
- “Configure it out” when not desired to eliminate synchronization/

context switching overhead

• Polymorphism and the Scheduler are the key
- Implement components behind well defined “interfaces”
- Individual threads respond to events using the Reactor Pattern

43

ReentrantCallbackHandler

run()

Examples of EventHandler
subtypes used in other
packages

1

Runnable

run()1

Thread

Thread()
setPriority()
getPriority()
start()
suspend()
resume()
join()

11

LivenessNodeServer

1..* 1

EventHandler

handleReaders()
handleWriters()
handleExceptions()
handleSignals()
handleTimeout()

EventHolder

handleReaders()
handleWriters()
handleExceptions()
handleSignals()
handleTimeout()
setOwnership()
getOwnership()

1..* 1

RunScheduler

stop()
run()

Scheduler

serviceOneEvent()
registerEvent()
servicePendingEvents()

event collection

invokes

Distributor

Process Model Key Classes

44

RTI 2.0 Design Modules

• Presentation Manager
• Administration
• Process Model
° Virtual Network
• Object Management
• Distribution Management
• Time Management

45

Virtual Network Module

• Communication Module Requirements
- isolate internal RTI modules from platform dependencies

associated with I/O mechanisms
- define standard interface to accommodate different transport

protocols while exploiting platform advantages

internal RTI modules
federate

presentation layer

communication network

� standard read/write interface
� communication channels
� configurable I/O scheduling
� access to low level services

virtual network layer

46

RTI Transport Requirements

• Federation and RTI Traffic
- federation traffic point-to-multipoint
- RTI traffic point-to-point and point-to-multipoint
- both types will have best effort and reliable transport requirements

• Best Effort
- no acknowledgment of receipt necessary (UDP)
- multicast technology offers best performance and scalability, but

there are limitations to number of addresses supported

• Reliable
- acknowledge data receipt (TCP, reliable multicast)
- reliable transport may require different characteristics based on

desired transport latency, acknowledgment latency, scalability

47

Virtual Network Design Issues

• Performance
- getting data to consumers reliably is not difficult, its getting it there

efficiently that must be accomplished

• Portability
- diverse platforms and operating systems may have differences in low

level I/O APIs, and provide non-standard mechanisms which can be
exploited to improve performance

- Flexibility
- federations require configuration of communication channels

• Extensibility
- future communication mechanisms and protocols need to be

accepted in an efficient and maintainable fashion

48

Virtual Network Design Overview

Outbound
Channel

Inbound
Channel

Addressed Data
(federate & RTI)

Distributor

packets bundled
with messages

communication network

coordinates
data writes

Data Messages
(federate & RTI)

demultiplexes
input packets

49

Multilevel Distributors

• Hierarchical Data Routing
- hierarchy added for large-scale federations to increase scalability
- software support currently required, but commercial hardware

may support this functionality in the future
- gateway unifies data interests to restrict inbound/outbound data,

reduces multicast stress on WAN

WAN

LAN

LAN

LAN

clients notify gateway
of active channels

gateways notify peer
gateways of required channels

50

Key Virtual Network Classes

• Channels
- physical data stream abstraction, hides protocol details
- more advanced or different mechanisms can be encapsulated

• Outbound Channels
- simple write/flush interface
- default bundling/fragmentation characteristics and priority (a particular

message can override bundling times or priority)
- message transaction control for individual attribute writes

• Inbound Channels
- simple read interface
- unpacks and reassembles into typed data messages
- initiates processing of messages (polymorphic behavior)

51

Key Virtual Network Classes (cont)

• Distributor
- exploit OS and platform support (e.g., Solaris Asynchronous I/O, NT

Completion Port)
- coordinate data writes for the various outbound channels

■ priority aware, efficient time-out table mechanism
- perform initial packet filtering on incoming data (e.g., federation

handle, channel id)
- demultiplex packets into inbound channels (priority aware)

• Channel Factory
- responsible for creation of all channel objects
- uses hierarchical type and marker strings

52

Data Transmission Collaboration
Diagram

 : Distributor

 : OutboundChannel

 : DataTransmissionController

 : communication
device

5: schedule timeout

9: build packet

 : LBTSadvisor

 : TransactionRegistry

4: provide timeout

8: flush command

10: transmit packet

3: open transaction

7: close transaction

2: write data

6: close transaction

1: set packet decoration

11: provide packet information

53

Outbound/Inbound Channel Class
Diagram

OutboundChannel

setMaxLatency()
setMaxSize()
write()
flush()

ReliableOutboundChannel

write()
flush()

MulticastOutboundChannel

setAddress()
write()
flush()

TCPoutboundChannel

setAddress()
write()
flush()

RMoutboundChannel

setAddress()
write()
flush()

Channel

MulticastInboundChannel

setAddress()
read()

ReliableInboundChannel

read()

HeartbeatChannel

read()

TransactionRegistry

openTransaction()
closeTransaction()

0..*

TransactionHandler

closeTransaction()

0..*

1

MessageFactory

InboundChannel

read()

1

54

RTI 2.0 Design Modules

• Presentation Manager
• Administration
• Process Model
• Virtual Network
° Object Management
• Distribution Management
• Time Management

55

Object Management Module

• Federation Objects & Interaction Requirements
- maintain FED information and perform RTTI
- implement protocol for IFSpec services
- maintain database of known objects
- maintain publication, subscription, and ownership information

internal RTI modules

federate

presentation layer

communication network

� messages for each IFSpec service
� efficient validation of services
� simple “process msg” interface
� memory pooling for high rate objects

virtual network layer

OM

56

Support for Efficient Data Flow

• In order to have a high performance RTI we need to optimize the
primary data flows for attributes and interactions

• Performance factors affecting efficient data flow
- validation of service invocations (checking pre-conditions)
- data copies / memory management

57

Object Management Design Issues

• Performance, Performance, Performance!!!
- must optimize primary data flows for a high performance RTI

■ eliminates unnecessary copies and memory allocation/deallocation
through message objects

■ eliminates unnecessary checks for services through DTC and state
objects (while still catching invalid invocations)

• Extensibility
- design must be extensible to easily adapt to the evolving HLA

standard
■ extensibility is built into design through abstract interfaces, factory

classes and factory methods

58

Validation of Service Invocation

• Issue(s)
- state of attributes and interactions determines validity of services

Federate

Registered Tank #5 location (owned)

velocity (remote)

Presentation Manager

update attribute

acquire attribute

reflect attribute
Distributed RTI Component

� federate can update tank #5’s
 location

� federate can not request attribute
 ownership acquisition on
 tank #5’s location

� federate can not reflect tank #5’s
 location attribute

59

Validation of Service Invocation:
Alternative #1

• Enumerate states and use switch
statement for each service
invocation
- use of conditional statement to

implement state specific behavior
n compiler optimized check O(1)

- replicated conditional statements
exist through out the system
n decreases maintainability of

system

function updateAttributeValues(...)

{

get attribute

switch (attribute.state)

{

case PublishedOwned :

sendToDestinations;

case SubscribedNotOwned :

throw exception;

}

}

60

Validation of Service Invocation :
Alternative #2

• encapsulation of state in an object
that implements behavior for each
service invocation
- use of class to encapsulate state

specific behavior
- isolates all behavior for a state in a

single class
■ increases maintainability of

system

class SubscribedNotOwned

: AttributeState

{

processUpdateAttributeValues()

{ throw exception };

processReflectAttributeValues()

{ give to federateAmb };

processRequestAttrOwnDivest()

{ throw exception };

}

61

Validation of Service Invocation :
Architectural Choice

• Alternative #2 was chosen in the design:
- it better encapsulates the behavior for a given state
- it eliminates the need to replicate a switch statement in each of the

functions that implement an HLA service (errors often arise from
missing cases in the switch statement)

Tank #5

exception

reconfigure attribute

abstract
attribute

Subscribed and
not owned

published
attribute

(pos)

send data

3

2

4

State Design Pattern

1. register object
2. update position
3. publish position
4. update position

62

Data Copies / Memory Management

• Data copies
- based on analysis and optimization of service validation, federate

thread goes “to the wire” for federate initiated calls
■ few CPU cycles are expended during federate initiated calls
■ “to the wire” means written to network or bundled in a channel
■ no copies are needed since data has been processed before

function return

• Memory Management
- “flyweight” pattern is used for large quantity objects

■ one instance of each type that does not maintain state
■ other objects use flyweight providing arguments to act on

- object pools for high rate objects
■ objects are reused instead of allocated & deallocated over time

63

Object Management Design Overview

Message

Presentation Manager

Outbound
Channel

DTCobject

DTCattribute
(Published)

Process
attributes

Lookup object
& process

Maintain atomicity
& bundle messages

Write to
comms

Message

Inbound channel
creates message

DTCobject

Lookup object
& process

DTCattribute
(Subscribed)

Message Deliverer

Enqueue
message

Create
message

Inbound
Channel

Read from
distributor

64

0..*

Message
execute()
getHeader()
encode()
decode()
dispatch()
getData()
getPriority()

MessageFactory
newMessage()
newPublishObjectClass()
newRegisterObject()
newUpdateAttributeValues()
newSendInteraction()
newSubscribeObjectClass()
newDiscoverObject()
newReflectAttributeValues()
newReceiveInteraction()
newRequestAttributeOwnershipAcquisition()
static instance()

0..*

contains

PublishObjectClass

RegisterObject

UpdateAttributeValues SendInteraction

SubscribeObjectClass DiscoverObject

ReflectAttributeValues

ReceiveInteraction

RequestAttributeOwnershipAcquisition

Subclasses of Message
exist for all IFSpec services.
(All subclasses not shown)

Message Protocol Class Diagram

...

65

 : DTCregistry

 : federate

 : DTCobject

 : PresentationManager

 : OutboundChannel

 : FederateAdministratorServer

 : TimeManager

 : Distributor

 : UpdateAttributeValues

 : TransactionRegistry

 : DTCattribute

 : MessageFactory

 : PublishedOwnedState

1: Update Attribute Values

8: process current attribute7: get retraction ID

12: close transaction

2: create message

10: write message

14: bundle messages

11: open transaction 13: close transaction

set decoration

15: set decoration

16: write

5: lookup DTCobject
6: process

4: check time

9: process message

3: create

Update Attribute Values

66

 : DTCobject

 : MessageDeliverer

 : DTCregistry
 : TimeManager

 : communication
device

 : ReflectAttributeValues : MessageFactory

 : InboundChannel

 : Distributor

 : SubscribedState

9: performExactFiltering

8: reflect

4: newMessage

11: insert message

7: process

6: lookup DTCobject

5: create reflect attribute values message

3: route

1: readPacket

2: oldMsgColorReceived

10: add to avplist

Reflect Attribute Values

67

RTI 2.0 Design Modules

• Presentation Manager
• Administration
• Process Model
• Virtual Network
• Object Management
° Distribution Management
• Time Management

68

Distribution Management Module

• Data Routing Requirements
- support the use of class (DM) and value (DDM) based filtering to

reduce the amount of unwanted traffic received by federates
- configurable to the needs of the federation

internal RTI modules

federate

presentation layer

communication network

� data addressing support for I/O
� supports different addressing schemes
� channels used to abstract DM & DDM
� hierarchical distribution supported

virtual network layer

DM

69

Distribution Management

• Data Addressing & Routing
- data needs to be routed along communication channels which are

used to provide segmentation in order to reduce unwanted traffic
- federations need the ability to customize the data routing scheme,

which then manages channel creation and addresses data

outbound
channels

inbound
channels

addresses outbound
 data messages

activates
inbound channels

Federate Application
data
messages

Distribution
Management

70

Data Addressing

• RTI supports two types of filtering
- class based filtering routes data solely on the type of attribute or

interaction using the Declaration Management Services
- value based filtering routes data according to rules that are

dependent on particular data values (typically the values of the data
being routed but not necessarily) using the Data Distribution
Management Services

• Ideally an infinite number of addresses or channels would be
used to provide perfect segmentation of data
- unfortunately there are limitations on the number of communication

streams that can be supported, and the computational resources
required for addressing become extreme

71

Value Based Filtering
(Data Distribution Management)

• Complete solution of dynamic producer-consumer matching
requires continual access to global knowledge
- and still results in an NP complete problem L

• Design Approach
- initially implement general purpose static gridding scheme, but

anticipate additional approaches architecturally

- dynamic grid adjustments can be added based on:
■ load-leveling: balance traffic loads across channels
■ packet rejection: optimize amount of traffic mis-routed

- “research-required” approaches are supported
■ source-based addressing
■ clustering

72

DM and DDM Issues

• DM and DDM Relationship
- architecture designed to support DM/DDM unification if required

(although this is not recommended by the design team)

• Perfect Filtering of Routing Space Regions
- 1.1 spec implies that an overlap of update region and subscription

region is required for data to be delivered to the federate
- design is configurable to allow federation to choose

• Multiple Receptions
- class and value based addressing may result in multiple

transmissions, design will remove duplicate messages

• Resource Allocation
- DM and DDM require key system resources, such as mcast groups
- resources allocated across DM/DDM according to federation needs

73

Distribution Management
Design Overview

GAK
(Global Addressing

Knowledge)

implements class and value
based addressing scheme

Addressor Obtainer

determines channel id
for attributes and interactions

activates and deactivates channels
based on subscriptions

74

 : Addressor : GAK

 : DTCattribute

 : ChannelFactory : Channel

8: check channel usage

2: determine channel

7: determine channel

3: factory channel

1: provide reference

6: modify region
5: write data

4: create channel

Data Addressing Collaboration
Diagram

75

 : Obtainer : GAK

 : InboundChannel

 : FOMinteractionClass

 : ChannelFactory

 : Distributor

2: determine channel

3: factory channel

1: subscription notification

4: create channel

5: route packet data

Data Subscription Collaboration
Diagram

76

RTI 2.0 Design Modules

• Presentation Manager
• Administration
• Process Model
• Virtual Network
• Object Management
• Distribution Management
° Time Management

77

Time Management

• Requirements
- implements the HLA time management services
- accommodates anticipated specification changes
- controls the advancement of a federates time
- properly orders all information released to the federate

federate

TM

presentation layer

communication network

virtual network layer

� provides efficient message delivery
� asynchronous LBTS algorithm
� fault tolerance
� scalable for large federations

internal RTI modules

78

LBTS Algorithm Overview

• LBTS algorithm’s salient features
- adaptation of Mattern’s distributed snapshot algorithm
- scalable to large federations
- asynchronous to avoid artificial deadlock
- handles zero-lookahead
- fault tolerance support (timers and message color)

FA

FB

wallclock time

FC

FD

federates cut

reduction
network

 (minimum)

LBTS

past future

cut point

79

• Reliable message delivery (Unordered delivery sufficient)
• Reduction tree support
• Number of destinations on outgoing messages required
• Requires decoration of outgoing messages and inspection of

incoming messages

LBTS Algorithm
Communication Requirements

80

Time Management Design Features

• Extensibility
- provides minimal impact of LBTS algorithm modifications
- future changes to specification

• Performance
- efficient FIFO message delivery
- avoids time creep
- asynchronous LBTS algorithm avoids artificial blocking
- scalable for large federations
- use of a reduction network

• Robust
- handles processor failures
- handles delayed messages

81

ConstrainedState

FQRpending IDLEpending NERApending NERpending TARApending TARpending

UnconstrainedState

Time

GraphManagerProxyGraphNodeProxy EventHandlerDistributor

LBTSwatchdogTimer

LBTSgraphManagerServer timer

LBTSgraphManagerProxy

LBTSnodeProxy

nodes

LBTSnodeServer

parentNode

PendingRequestState

1
LBTSadvisor myManager

parent and children

myNode
advisor

receives current decoration

1

RTIambassador

DelivererState
pendingRequest

TimeManager
11 LBTS advisement

TM services

1

11
1

MessageDeliverer

constraintState

Queue Status

Message
Release
Control

1

FIFOqueue
1

1

0..*
1

TSOqueue
1

1

0..*

0..*

Priority

1

Message

1

0..*
1

0..*

0..*

1

FederateAmbassador

Delivery of callbacks

Time Management Main Class Diagram

82

Initiation of LBTS
Collaboration Diagram

 : LBTSadvisor

 : federate

 : RTIambassador

 : MessageDeliverer

 : TimeManager

 : TSOqueue : FIFOqueue

 : TimeManager

constraintState : ConstrainedState

9: requestLBTSstart ()

2: tick ()

3: tick ()

8: initiateLBTS ()

4: tick ()

7: initiateLBTS ()

1: setLBTSinitiationValue (minOutstandingMsgs)

6: getNumMessages () 5: getNumMessageToTime ()

